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O. INTRODUCTION AND SUMMARY

There is an extensive literature in the field of orthogonal polynomials
which is particularly concerned with detailed investigation of zeros and
related questions [e.g., 3, 11, 17]. Most results on the zeros of the classical
orthogonal polynomials are local in nature, such as inequalities, asymptotic
expansions, and monotonicity properties. The global behaviour of the zeros
is given in terms of the asymptotic distribution functions is well-known in
the case of orthogonal polynomials with an absolutely continuous weight
function possessing an a.e. positive derivative on a compact interval,
[ - I, I] say. Then, projecting the zeros from [ - I, I] on the upper half of
the unit circle, the points obtained on that semicircle are equidistributed
there [cf. 17, Theorem 12.7.2, p. 310; 3, Theorem 9.3, p. 134]. For a class
of weight functions supported by an unbounded interval, the asymptotic
zero distribution for the associated orthogonal polynomials has been
determined and investigated in a series of recent papers [e.g., 8 10,
12,16,19,20]. The proofs either require certain extremal principles
from potential theory or are based on three-term recurrence relations and
use suitable quadrature formulae. Most of these works cover the two
prominent representatives of orthogonal polynomials on an unbounded
interval: Hermite and Laguerre polynomials. The primary object of this
paper consists in an alternative computation of the asymptotic distribution
function of the zeros for the two particular cases just mentioned
(Section 2). Our proofs are based on a continuity theorem for Stieltjes
transforms of distribution functions. This approach is well-known in prob­
ability theory for proving convergence of distribution functions via some
suitable functionals (Section I). To be more precise, we denote by X,n'
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v = 1,,00" n, the zeros of the Hermite or Laguerre polynomial of degree n
which are well-known to be real and simple. Thus we may assume them
to be numbered according to

Further, we put

X"l <X,,2< ... <x""' nE N. (0.1 )

N,,(O:= I{VE {1,00., n}lx"v:( 01, (0.2 )

Then the central results of this paper are established in Section 2 and read
as follows:

1 2 (
lim -Nn(4n~)=-f t li

2(l-t) li2 dt,
!1-l' '-f_ n 'IT 0

in case of Laguerre polynomials (Theorem 1) and

1 2 (
lim -N,,(~O=-f jt=f2dt,

l1-,--Y:,n rr-I

(0.3 )

(0.4 )

for Hermite polynomials (Theorem 3), thereby showing that the exact dis­
tribution functions suitably normalized tend to certain beta distributions.

In Section 3 we deal with Jonquiere polynomials, P" say, which can be
defined by the rational function

. x," " P,,(z)
j,,(z):= L v Z = (l-z)"+ I'

\'=1

(0.5)

[cf. 15, Vol. I, problem 46, p. 7; 7], where P" is a polynomial of degree n.
This function and its various generalizations (see (0.5)' below and Sec­
tion 3) are of some significance in various branches of mathematics and
physics, such as summability, analytic number theory and the theory of
structure of polymers. It is known [7, 14] that all zeros of P" are real, non­
positive, and simple. With the notations of (0.1) and (0.2) we prove
(Theorem 5)

- 00 < ~:( o. (0.6)

Moreover, this result is extended to the generalization

'X)

jAz) : = L v"z",
v = 1

K>O, (0.5)'
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of (0.5), which possesses an analytic continuation onto C i. where
throughout the paper for real a we use the notation

1[; := {z E iCI if Re Z ?:a, then 1m Z 7"" O}.

I. AUXILIARY RESULTS

(0.7)

In this section we collect some auxiliary results which are basic for the
technical treatments of the proofs. To this end. in view of the examples
announced in the Introduction above we assume throughout this section
that

"
Qn(z)=:an n (z-Z/H)'

\'=1

nEN, a" 7""0. ( 1.1 )

defines a sequence of polynomials the zeros of which are located on the
nonnegative real axis. Further we suppose them to be numbered according
to

(not necessarily distinct) and we put

Nn(t) :=I{VE {1, ...,n}lz/H~t}l, t?: O.

(1.2 )

(1.3 )

That is, Nn(t) denotes the number of zeros of Qn being located "between 0
and t." It is well-known from the theory of orthogonal polynomials
[e.g., 17. Theorem 12.7.2, p.31O; 3, Sect. III.9; 15, Vol. I. problem 194,
p. 77] that for orthogonal polynomials on a compact interval, p" say, the
limit distribution of the zeros is closely related to the asymptotic behaviour
of Pn(z )1/'1 or equivalently of(l/n)p;,(z )/Pn(z) in some domain of the complex
plane. Modifying this approach and writing the logarithmic derivative of
Qn as

(1.4 )

[see also 5, Ex. 6, p. 309] we are led to proving convergence of distribution
functions concentrated on the positive real axis via its Stieltjes transforms.

For the sake of clarity we are slightly more general and consider the
class M + , say, consisting of all distribution functions being concentrated
on [0, CIJ). Moreover, we assume each FE M + to be normalized such that
F is right continuous and we define its Stieltjes transform by

~ .-IT dF(t)h(Lo).- -,
o Z - t

(1.5)
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being holomorphic throughout ct. Due to the normalization F is uniquely
determined by h [e.g.,21, p.336]. Now we can state the following con­
tinuity theorem for Stieltjes transforms. For completeness we add a short
proof.

LEMMA 1. Suppose that FnE M + and hn are the corresponding Stieltjes
transforms, n EN.

(i) If
(1.6)

for Z in a neighbourhood of some Zo E ct, then (1.6) holds throughout ct.
(ii) If, further,

-xh( -x) ---> 1 as 0< x ---> 00, (1.7)

then there exists a (unique) FE M + the Stieltjes transform of which is hand

(1.8 )
n-,x

at ali continuity points of F.

Proof Part (i) is a simple consequence of Vitali's theorem [e.g., 18,
p. 168]. To show part (ii) we use standard arguments from probability
theory [e.g., 2, Chap. 8] for proving convergence of distribution functions
by looking at certain functionals. Since the class of functions

{flf(t)= z~t' t~O, ZECt}

is M+-separating [2, p. 165], i.e., in (1.5) h determines F uniquely, it
remains to show [2, Proposition 8.15, p. 165] that under (1.6) and the con­
tinuity condition (1.7) the sequence {Fn } is masspreserving
[2, Definition 8.9, p. 162]. To this end first we conclude from (1.5) that
(z = -x)

x>O, (1.9 )

since for any FnE M + we have (lim h if) Fn(t) = 1)

fCD dF (t) foc t foc t1+xhn( -x) = 1- x _n_= --dFn(t) ~ --dFnlt)
o x+t 0 x+t x x+t
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Thus (1.9) combined with part i implies

lim (1 - F,,(x)) ~ I + xh( --x),

and further, by (1.7),

lim lim (I-F,,(x))=O.
y- ,-.( 1/ ----,> f

x>O,

Now, as in [2, proof of Proposition 8.29, p. 172] it follows that {F,,) IS

masspreserving and the proof is complete.
Putting

1
F,,(t):=-N,,(t), t~O,

n

the following translation of Lemma 1 into terms of the polynomials Q" is
immediate.

LEMMA 2. Suppose that {Q,,} is a sequence oj polynomials oj degree n
with real non negative zeros only (see (1.1 )-( 1.3)).

(i) Ij

. 1 Q~(z)
hm ---=h(z)
,,~xnQn(z)

(1.6)'

for z in a neighbourhood oj some Zo E iC~, then (1.6) holds throughout iC~.

(ii) If; further, (1.7) holds, then there exists a (unique) FE M t with
(1.5) and

I
lim - N,,(t) = F(t)

ll--+'X' n
(1.8)'

at all continuity points of F.

Remarks. (i) If 0 ~ t 1 < t 2 and n is large enough, then (1.8)' gives an
approximation for the number of zeros of Q" in (t" t2 ] by n(F(t2 ) - F(t j )).

(ii) In many applications the limit in (1.6)' can be determined and then
an evaluation of F is reduced to the inversion of a Stieltjes transform
(cf. [21, Chap. VIII, Sect. 7]).

Next, we turn to Laguerre and Hermite polynomials, where throughout
we use definitions and notations given in [17, Chap. V]. The following
modification of Perron's formula for Laguerre polynomials (ef. [17,
Theorem 8.22.3, p. 199]) will be fundamental in computing the asymptotic
distribution function of the zeros of Laguerre and Hermite polynomials.
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LEMMA 3. If L~~)(z) denotes the Laguerre polynomial of degree n, IY. E IR,
then as n ~ OCJ

1/4

L~~)(4nz)=_1_ (2z + 2)Z2- zr~-l (I -~)
~ z

(1.10)

x {e 2z + 2
-}z2

z (1-2z + 2)Z2 - z)}n (I + (i)G))'

for z in the half-plane

H := {z E iCI Re z < O}. (1.11 )

The function involved in the (i)-term is holomorphic in H.

Remarks. (i) For the fractional powers t/l, fJ E IR, we have to choose
that branch which is real and positive if t is so.

(ii) Further, we observe that according to this choice of the power the
z-plane with a cut along [0, I J is mapped by

'+ =2z+2)Z2_ Z and '=2z-2)Z2_ Z (1.12)

onto the interior and the exterior of the circle {, II' - 11 = I} in the
( - plane, respectively.

(iii) The following proof shows that the set H for which (1.10) holds
can be extended but for our purpose the present form of Lemma 3 is suf­
ficient.

Proof of Lemma 3. We start with the representation [17, for­
mula (5.4.8), p. 105J

e:z-~f e It"+~

L~a)(z) = -2-' (t _ )" + 1 dt,m), z
z#O,

y being a contour enclosing t = z, but not t = O. Next, we obtain

e411:(4z)-a f (e'-'r)" r~
Va) (4nz) = -- --dt

n 2ni? r - 4z r - 4z '
z#O, (1.13)

where now y denotes a contour enclosing r = 4z, but not r = O. For the
asymptotic evaluation of (1.13) we employ the method of steepest descent
for contour integrals (cf. [13, Chap. 4, Sect. 7J). To this end we put

r
p(r) :=r-Iog--,

r-4z

r~

q(r) :=-4­
r- z

(1.14)
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and suppose first that.:: is real and negative. The branch of the logarithm is
real if r is real and r < 4.::. Possible saddle points for the integral in (1.13)
are r =, j- as solutions of the equation p'( r) = O. We choose r = , (located
on the negative real axis in the r-plane) and in (1.13), due to Cauchy's
theorem,

}' := {r = r( ¢J ) = 4z + (4z -, ) e1,p I°~ ¢J ~ 2n }

42

Graph of 0'"

(observe that 4z - , =2z + 2)Z2 - Z =, + > °for z < 0, by (1.12)). Then
the circle y is contained in the half-plane {r IRe r < O} and r = , is the
only saddle point on }' (note that r(n) =, ). Further, we have

and for r E }' - {( }

I
p"(' )=:)Z2_ Z (1.15 )

(1.16 )

since I( -I> Irl. These observations imply that all assumptions of the
method of steepest descent are satisfied [13, Theorem 7.1, p. 127J and we
obtain from (1.13), (1.12), and (1.14)



DISTRIBUTION OF ZEROS OF POLYNOMIALS

L (~)(4 )_e4nz(4z)-~2 np(!;) t:. q(C) (1 (I)(~))
n nz - 2ni e y-;; (2p"(( _ ))1/2 + n

221

1 4nz(C)~ (e-Cc)n 1 1 (1 (1))
=~e 4z C-4z C-4zi(P"(( ))1 /2 +(1)-;;

In forming (P"(C ))1 /2 the branch of Wo = arg(p"(C)) must satisfy

Iwo + 3nl ~ n/2, since

lim arg (r( r/J) - ( ) = 3n/2; hence we have W o= - 3n.
¢~Jr+O

Now (1.10) follows from (1.12) and (1.15) in case z<O (note that
- i = e3Jri/2).

In order to extend the validity of (1.10) to the half-plane H, we have to pay
attention to the key condition of the saddle point method, that is,

Re(p(r) - p( ( )) > 0 (1.17)

for r ':: y - {( _ }. To this end we keep 4z E H fixed in the r-plane and con­
struct y c iCt in (1.13) such that

Re(r -C) >0 and 1
-'--4z -(I> 1
( -4z ,

(1.18)

for ,E Y- {(
equivalent to

(observe (1.16)). The second condition III ( 1.18) IS

I
4z I 14z1

r-l_laI2 >1_laI 2Ial

where lal = I( + - 11 < 1 for all z E iC - [0, 1] (compare Remark (ii) above).
First in (1.13) we start with y as the circle
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Graph of y.

t

and observe that r =°and r = 4z are in the exterior and the interior respec­
tively. Further, y passes through ( and Re(4z - ( ) = Re(( + ) > O.
However, if 1m z of- 0, then part of y is contained in {r IRe( r - ( ) < °}.
Next, by deforming y into Y1

Graph of )' ,.
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we further extend 11 into 12 U 13

4z

~
• •

4z

Graph of Y2 v y,.

223

where 12 and 13 approach infinity through the half-plane {r IRe r > O}
(note that the integrand in (1.13) decays exponentially). By Cauchy's
theorem the contribution along 12 vanishes and 13 c (:6' may be chosen
according to (1.18). Now the arguments for Z E H leading from (1.13) to
(1.10) are the same as above and the proof of lemma 3 is complete.

2. ORTHOGONAL POLYNOMIALS

In this section we apply the results of the preceding section to Hermite
and Laguerre polynomials.

First we deal with Laguerre polynomials L~x), (l> -1, [17, Chap. V].
Then all zeros of V:) are positive which we assume to be numbered by
(0.1 ),. and also with this notation and (0.2) we put

(2.1 )

the number of zeros of L~~) not exceeding ~. Starting with (1.4), Qn = L~a),

Perron's asymptotic formula for Laguerre polynomials in the complex
domain does not produce the "correct weight" lin for each zero

640:50. J-J
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[17, Theorem 8.22.3, p. 199]. However, looking at local results shows that
the largest zero X"n is "roughly" located near 411, as 11 -> X [17, 6.32,
pp. 131, 132]. This observation leads to considering

Q,,(Z) :=L;," (4I1z)

rather than L~x) itself. Clearly we have

C~O.

(2.2)

(2.3 )

Now Lemma 3 shows that (2.3) is a proper scaling for obtaining a non
trivial limit distribution. More precisely, from Lemma 3 we get that

I· 1 Q;,(z) - h( )
1m ---- Z,

n-rI1Qn(z)
ZEH, (2.4 )

where h is the logarithmic derivative of the function
exp (2z + 2JZ 2 - z) (1 - 2z + 2JZ 2 ~ z) (observe that QIl has no zeros in H
and the remainder term in (1.10) is holomorphic in H). Next, a
straightforward computation gives

2
h(z) = -z_-J--=Z2=_=Z (2.5)

and it follows that the continuity condition (1.7) is satisfied. Hence (2.4)
and Lemma 2 imply that there exists a unique FE M + such that

or dF(t)
h(z)=J -,

() z - t
(1.5)

Since, by (2.5), h is holomorphic in the cut plane iC - [0, 1J and can be
extended analytically beyond the cut we even have

h(z) = f :~)/t, (2.6 )

where jE L(O, I) is the derivative of F that is its corresponding density.
Now from (2.6) with (2.5) we conclude by an inversion theorem for Stielt­
jes transforms [21, Theorem 7b, formula (5)J that

Combining these results we have proved:

O<t~1. (2.7)
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THEOREM 1. If L~~)(z) denotes the Laguerre polynomial of degree n,
a> --1, and Nn(O is the number of zeros of L~~) not exceeding ~, ~ ~ 0, then

Remark. Writing in (2.7)

f (t) = T(~ + ~) t(Ij2)-1 (1 _ t)(3/2) I

r(!)rw

0<~~1.

0< t ~ 1,

(0.3 )

we recognize F to be the beta distribution with parameters (1/2,3/2) which
also may be written in the form

F(O =~(J~(l - 0 + arc sin ~),
n

[6, Chap. 24].
Theorem 1 gives the asymptotic number of zeros in intervals of the form

(4n~ I' 4n~2J that is in intervals the length of which tends to infinity with n
(compare remark (i) after Lemma 2). In contrast to this result the question
arises: "how many" zeros are located in a "fixed" interval, (~l' ~ 2] say? The
precise answer is given by:

THEOREM 2. Under the assumptions and with the notations of Theorem 1
we have

~>O. (2.8 )

Proof This runs parallel to the classical proof for the limit distribution
of the zeros of orthogonal polynomials on a compact interval
(cf. [3, Sect. 111.9]). Therefore we restrict our considerations to some essen­
tial steps. Starting from the above-mentioned Perron's formula [17,
Theorem 8.22.3, p. 199] we get

1 n I -I
lim r:. L --= 1/2'

n - 00 V n v = 1 Z - X nv ( - z)
ZEC~.

Power series expansion at z = - 1 and comparing coefficients gives
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(
-1/2) . (2k) I 2 rn

:
2

. I ~I '('

k
( - I )' = k 4' = - (cos t )2' dt = - I . dx

n·O n'oVx(l-x)

further we obtain by the approximation theorem of Weierstrass,

. I 11 I (I) IfI g(X)hm- I --g -- =- dx
lI~u:fivooll+xm I+xm noJx(l-x)

for every continuous function g on [0, I]. Using a continuous
approximation to the function

g(x) :=0,

:= I/x,

where ~ > °is fixed, we end with

I
x<I+~

I
--~x~l;
I+~

. I . I" I fl dx 2 ~
hm - Nn(~) = hm - L, 1=- 3/2 1/2 =-'.1 ~

11·'1 fi II~'''. fixm"," n 1/(1 +clX (I-x) n

and (2.8) is established.
Next, we turn to Hermite polynomials Hn [17, Chap. V]. Basically we

could proceed as in case of Laguerre polynomials by deriving an analogue
to Lemma 3. However, we use the close relation between the two types of
polynomials given by [17, formula (5.6.1), p. 106]

from which the following relations are immediate consequences,

N 2m(H2m ; 0 = m - Nm(L),; 1/21; e- 0),

=m+Nm(L~ 1/2); e),

N 2m + I(H2m + I;~) = m - N m(Lt,;./2 J ; e- 0),

= m + I + N m(Lt,;.'2); ~2),

~ <0,

c"o,
~ <0,

(2.9)

(2.10)

where N m ( ~ - 0) denotes the left side limit as customary (see (0.2)). Now a
straightforward computation based on Theorem I yields the corresponding
analogue for Hermite polynomials in:
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THEOREM 3. If H n denotes the Hermite polynomial of degree nand Nn(O
is the number of zeros of H n not exceeding ¢, ¢ E IR, then

1 2 J~lim - N n(j2;,O = - J1=f2 dt,
n----+con n -1

(0.4 )

Remark. The limit distribution in (0.4) again is a beta distribution,
however, here with support [- 1, 1J and parameters (~, ~) [6, Chap. 24J
and it can be written in the form

~ (¢jt=f+arcsin ¢+~}

In this context it should be mentioned that this beta distribution also
occurs as limit of random distribution functions of the eigenvalues in a
sequence of certain random matrices [1, 22].

Finally we state the analogue of Theorem 2 for Hermite polynomials giv­
ing the asymptotic number of zeros in a "fixed" interval (¢ I' ¢2]. Since it is
an immediate consequence of Theorem 2, (2.9), and (2.10) we omit its sim­
ple proof.

THEOREM 4. Under the assumptions and with the notations of Theorem 3
we have

r 1 J2"n~~c .;;z (Nn(¢2) - Nn(¢I )) = --;- (¢ 2 - SI ), (2.11 )

The classical uniform distribution result for orthogonal polynomials on
[ -1, 1J mentioned in the introduction could also be derived from
Lemma 2.

3. JONQUIERE POLYNOMIALS

In this section we deal with Jonquiere's function j~ (see (0.5)') and the
associated polynomials Pn (see (0.5)). It is known (e.g., [14J) that fK has
exactly n zeros in Cr, if n - 1 < K ~ n, n EN, all of them are located on the
nonpositive real axis and they are simple. In [4J the zeros offK in C rare
determined asymptotically as Re (K) ---> 00 (even if K runs through complex
values such that 1m K/(Re K + 1) is constant). Based on this local result for
the zeros the asymptotic distribution function was determined, when
0< K ---> 00. Avoiding these local approximations of the zeros which require
some voluminous analysis here we derive the limit distribution of the zeros
via Lemma 2.
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First we deal with the case n; = n EN, where the zeros XfII of PI1 are num­
bered according to (0.1) and its counting function is given by (0.2). We
start with the Lindelof-Wirtinger expansion forf;, [24,4]

[,( )
_ PI1(z) _ , ~

, n Z - (1 _ z )t1 + 1 - n. m =L (2nim + 10g(l/z))", I'
nE N, (3.1)

valid in C - {I}, where for the logarithm the principal branch in CS is
chosen; that is, log( I/z) is real for real positive z. Rewriting (3.1) as

P(7) (1-- )11+!{ I}_'_'-_= L I+Oog(l/z))I1+!
n! 10g(l/z) m~0(2nim+log(l/z))I1+1

we obtain for z in some neighbourhood of z = 1

I
. 1 P;,(z)
1m ---=g(z),

11~ x n P I1 (z)

where

d (I-Z) 1 1g(z) :=-Iog =----.
dz log(l/z) z-I zlogz

Putting

(3.2)

(3.3 )

we have

QI1(z):=PI1(-z) and h(z) := = -g( -z) (3.4 )

. 1 Q;,(z)
hm ---=h(z)

I1>X n Q,Jz)
(3.2 )'

for z in some neighbourhood of z = -1. From (3.3) and (3.4) we get
-xh( -x) -> 1 as 0 < x -> 00, that is (1.7) holds. Thus Lemma 2 combined
with (3.2)' implies the existence of a unique FE M + such that

fx dF(t)
h(z)= -,

o z - t
ZEC(\'.

Further, by the analytical properties of h (compare the proof of
Theorem I) we get

h(z) = r'j(t) dt,
Jo z - t

zEC6',
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where f = P. As above, by Theorem 7b in [21, p. 340], we conclude

229

t > o.

Combining these results we end with (observe (3.4))

THEOREM 5. If Pn denotes the Jonquiere polynomial of degree nand
N,J ~) is the number of zeros of Pn not exceeding ~, ~ ~ 0, then

1 f( dt
lim -Nn(O= 2 2

II _ Cf n x ( - t)(n + log (- t))

1 (1 -1)= 1--arccotan -log-
n n ~

~ <0, (3.5 )

arc cotan being the branch with 0 < arc cotan x < n for real x.

Remark. Since znPn(l/z)=Pn(z) [7,14] we have for

x nl < '" <Xn,II_1 <xnn=O, x m =l/xn v,v=l, ... ,n-l.

This kind of symmetry is reflected by the relation F( 1/~) = 1~ F( ~) where F
denotes the limit distribution in (3.5).

Finally we extend Theorem 5 tof~ (see (0.5)') the zeros of which we may
assume to be numbered according to Peyerimhoff's result [14] as

n - 1 < K ~ n, n EN.

It follows from the monotonicity of the zeros with respect to K [23, observe
the different numbering of the zeros] and the separating property of the
zeros of[" (see (0.5) and zf~(z)=fn+ I(Z)) that we have

v=2, ... , n

and

v = 1,..., n,

where n - 1 < K ~ n, n EN. Denoting as above
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for given ~:( 0 there exists a 1'0 E { 1,... , n) such that x",." I (n) < ~ :( .\",,,(11)

(put x".o := - CD). Hence we get

N"U~;~) = N,,(P,,;~)

=N,,(P,,; 0+ I

if ~ < x".,.,,(h·) or ~ = X".",(II)

if x".vo( K) :( ( < x".v,,(n)

and so the desired extension of Theorem 5 by:

COROLLARY TO THEOREM 5. Ilf~ denotes jonquiere's function (delined ill
(0.5 n, n - I < K:( n, n EN, and N,,( () is the number of zeros of f~ not
exceeding ~, ~:( 0, then (3.5) holds.
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